BRAINSTORM S14EQ3 - UNICODE

TABLE OF CONTENTS

Peter Norvig : Teach yourself programming in ten years
Y YOI®) - arianc

Topicus: In welke taal denk jij?

[JOI®] UniCode

Staff CS: Marco Aiello

Puzzle
D Y@NE) 1ntro camp: New kids on the block

Entertaining article, no scientific content.
Q@O0 4 puzzle or a Cover related article are

examples of this category.

Easily readable article on a scientific topic.

@00 iouldbe comprehensible, even without

any prior knowledge.

11

12

17

18

22

24

Scientific article that explores a certain topic

000 depth. Might assume the reader has taken

a course that’s related to the topic.

OO

generally learn a lot of interesting stuff and

you can of course enjoy plenty of alcohol and
blame it on student tradition! Amidst all the
new patterns you have to follow, you find a
way to have fun. After five years of studying,
this is still true for me: the fact that every
term has only ten weeks still manages to
escape me every single time, but I learn some
really interesting things along the way, even
when I have to rush for the latest deadline.

University life seems to have a lot of patterns,
be it the four terms of ten weeks, or the
regular partying that needs to be done. We
could call this some sort of university code,
or unicode if you will. Some people would
simply say that unicode is only the standard
for character encoding, but I think the word
has a lot more potential. For example, there is
also the code that I produce for my university
courses: my very own (usually flawed)

UniCode.

This edition of the Brainstorm explores the
character of this unicode. There is ample
opportunity to learn how to code, with
Peter Norvig’s guide on how to really learn

FDITORIAL

programming, for example. If you are already
proficient in programming, you might
enjoy the piece by Topicus, on how to apply
this knowledge in multiple programming
paradigms.

If you are looking for something a little less
serious, you can also read how our chairman
views the human mind, or try to get up to
speed with the rules a proper university
student should always follow, in our section
on the UniCode. If you missed out on the
introductory camp, or want to reminisce
about it already, Rianne’s piece on how she
experienced ‘New Kids on the Block’ is just
your thing.

I hope you will enjoy reading this edition of
the Brainstorm. Don’t forget to stay sharp,
and remember the UniCode!

pHOTO: Arnoud van de Meulen

TR

EDITORIAL 3

L JOl@,

BY THE

___ By: Robin Hermes, chairman

In the computational theory of the mind, the
human brain is viewed as a kind of computer.
Expanding on this, I would say human
behaviour is like a computer program. Let me
take mysclf as an example.

At the time I was born, I had only a basic
set of instructions — kind of like my own
assembly language — with a very limited
collection of predefined functions. All I
could really do was activate a loud warning
signal, and turn preprocessed input into raw,
useless output. Luckily however, my assembly
language also allowed for something else: to
define and implement new functions myself.
For example, after some practice I learned to
properly operate my actuators, and started
implementing a walk method.

Then one day, I had sufficiently developed a
communication protocol, enabling myself to
effectively interact with the world - clearly,
quite some debugging was still needed in the
beginning.

When I had fine-tuned my communication
protocol, it allowed me to include libraries
from external sources; new data could rapidly
be obtained, allowing my knowledge to grow
exponentially.

Now here I am: a self-expanding computer
program in a nice wrapper, and part of the

board of Cover.

Within the board, we are constantly
communicating: keeping each other up-to-
date, debating about some pressing matters or

4 BY THE BOARD

BOARD

discussing our weekends. But besides talking
to each other, we are also in touch with our
members and the outside world.

So we are interacting with people all the time
to exchange information; to extract useful
data from them and to convey our own
messages. It is important that during this
process, everyone is using the same code page.
After all, incorrect decoding of messages can
lead to miscommunication and all kinds of
unexpected errors.

When we listen to each other carefully and
express ourselves clearly, we can make sure
that everyone is on the same page and all
communication is running smoothly. This
way we can break new grounds and get Cover
to a higher level. So let’s build on those vast
knowledge libraries that we already have
together, and achieve marvellous things
during the coming year!

PHOTO. Robin Hermes

| JOl@,

By: Daniel Dennet

t
e

BY DRNEL
PENNETT

&
~NEIL COHN _

I DIPN'T
KNow you
UNPERSTOOD

I PON’T. I SEE! You USE
THE SYMBOLS ARE Y lvour uNpERSTANDING

JUST MEANINGLESS 5QUIGELES OF ENGLISH
TO ME, T CONSULT P LIST OF IN ORPER TO FAKE
RULES THAT ARE IN ENGLISH + AND UNDERSTANDING
THESE RULES INSTRUCT ME HOW TO CHINESE!
GIVE BACK CERTAIN
CHINESE SYMBOLS
WITH CERTAIN SORTS
OF SHAPES IN RESPONSE
o) CEQTASIN S0RTS

GIVEN TO Me
IN THE THIRD
a BATCH.
THAT'S ALL T'M
DOING, FOLLOWING
THE RULES.

WHAT
MAKES You

THINK T
LINDERSTAND

Why is everyone in such a rush?

Walk into any bookstore, and you'll see How
to Teach Yourself Java in 7 Days alongside
endless variations offering to teach Visual
Basic, Windows, the Internet and so on in a
few days or hours. I did the following power
search at Amazon.com:

pubdate: after 1992 and title: days and
(title: learn or title: teach yourself)

and got back 248 hits. The first 78 were
computer books (number 79 was Learn
Bengali in 30 days). 1 replaced “days”
with “hours” and got remarkably similar
results: 253 more books, with 77 computer
books followed by Teach Yourself
Grammar and Style in 24 Hours
at number 78. Out of the top 200
total, 96% were computer books.

The conclusion is that either people

are in a big rush to learn about computers,
or that computers are somehow fabulously
easier to learn than anything else. There are
no books on how to learn Beethoven, or
Quantum Physics, or even Dog Grooming in
a few days. Felleisen et al. give a nod to this
trend in their book How ro Design Programs,
when they say “Bad programming is easy.
Idiots can learn it in 21 days, even if they are
dummies”.

Let’s analyze what a title like Zearn C++ in
Three Days could mean:

Learn:

In 3 days you won’t have time to write several
significant programs, and learn from your
successes and failures with them. You won’t
have time to work with an experienced
programmer and understand what it is like
to live in a C++ environment. In shore,

PETER NORVIG: TEACH YOURSELF PROGRAMMING IN TEN YEARS 7

o] 1 J

you won't have time to learn much. So the
book can only be talking about a superficial
familiarity, not a deep understanding. As
Alexander Pope said, a little learning is a
dangerous thing.

C++:

In 3 days you might be able to learn some
of the syntax of C++ (if you already know
another language), but you couldn’t learn
much about how to use the language. In
short, if you were, say, a Basic programmer,
you could learn to write programs in the style
of Basic using C++ syntax, but you couldn’t
learn what C++ is actually good (and bad)
for. So what’s the point? Alan Perlis once

Anyone can cook, but only the

fearless can be great

said: “A language that doesn’t affect the
way you think about programming, is not
worth knowing”. One possible point is that
you have to learn a tiny bit of C++ (or more
likely, something like JavaScript or Flash’s
Flex) because you need to interface with an
existing tool to accomplish a specific task.
But then you're notlearninghow to program;
you're learning to accomplish that task.

in Three Days:
Unfortunately, this is not enough, as the next
section shows.

Teach Yourself Programming in Ten
Years

Researchers (Bloom (1985), Bryan & Harter
(1899), Hayes (1989), Simmon & Chase
(1973)) have shown it takes about ten years
to develop expertise in any of a wide variety
of areas, including chess playing, music

000

composition, tciegraph operation, painting,
piano playing, swimming, tennis, and
research in neuropsychology and topology.
The key is deliberative practice: not just doing
it again and again, but challenging yourself
with a task that is just beyond your current
ability, trying it, analyzing your performance
while and after doing it, and correcting any
mistakes. Then repeat. And repeat again.
There appear to be no real shortcuts: even
Mozart, who was a musical prodigy at age

The key is challenging yourself

with atask that is’just beyond
your current ability

4, took 13 more years before he began to
produce world-class music. In another genre,
the Beatles seemed to burst onto the scene
with a string of #1 hits and an appearance
on the Ed Sullivan show in 1964. But they
had been playing small clubs in Liverpool
and Hamburg since 1957, and while they
had mass appeal early on, their first great
critical success, Sgt. Peppers, was released in
1967. Malcolm Gladwell reports that a study
of students at the Berlin Academy of Music
compared the top, middle, and bottom third
of the class and asked them how much they
had practiced.

Everyone, from all three groups, started
playing at roughly the same time - around the
age of five. In those first few years, everyone
practised roughly the same amount - about
two or three hours a week. But around the
age of eight real differences started to emerge.
The students who would end up as the best
in their class began to practise more than
everyone else: six hours a week by age nine,

eight by age 12, 16 a week by age 14, and

up and up, until by the age of 20 they were
practising well over 30 hours a week. By the
age of 20, the elite performers had all totalled
10,000 hours of practice over the course of
their lives. The merely good students had
totalled, by contrast, 8,000 hours, and the
future music teachers just over 4,000 hours.

So it may be that 10,000 hours, not 10
years, is the magic number. (Henri Cartier-
Bresson (1908-2004) said “Your first 10,000
photographs are your worst,” but
he shot more than one an hour.)
(1709-1784)
thought it took even longer:

Samuel Johnson
“Excellence in any department can
be attained only by the labor of a
lifetime; it is not to be purchased
at a lesser price” And Chaucer (1340-1400)
complained “the lyf so short, the craft so long
to lerne” Hippocrates (c. 400BC) is known
for the excerpt “ars longa, vita brevis”, which
is part of the longer quotation “Ars longa,
vita brevis, occasio pracceps, experimentum
periculosum, iudicium difficile”, which in
English renders as “Life is short, [the] craft
long, opportunity ﬂeeting, experiment
treacherous, judgment difficult” Although
in Latin, “ars” can mean either “art” or “craft”,
in the original Greek the word “techne” can
only mean “skill”, not “art”

So You Want to be a Programmer

Get interested in programming, and do some
because it is fun

Make sure that it keeps being enough fun
so that you will be willing to put in your ten
years/10,000 hours.

Program

The best kind of learning is learning by doing.
To put it more technically, “the maximal
level of performance for individuals in a

8 PETER NORVIG: TEACH YOURSELF PROGRAMMING IN TEN YEARS

given domain is not attained automatically
as a function of extended experience, but the
level of performance can be increased even
by highly experienced individuals as a result
of deliberate efforts to improve.” (p. 366)
and “the most effective learning requires
a well-defined task with an appropriate
difficulty level for the particular individual,
informative feedback, and opportunities for
repetition and corrections of errors.” (p. 20-
21) The book Cognition in Practice: Mind,
Mathematics, and Culture in Everyday Life
is an interesting reference for this viewpoint.

Talk with other programmers
Read other programs. This is more important
than any book or training course.

If you want, put in four years at a college

This will give you access to some jobs that
require credentials, and it will give you a
deeper understanding of the field, but if
you don’t enjoy school, you can (with some
dedication) get similar experience on your
own or on the job. In any case, book learning
alone won’t be enough. “Computer science
education cannot make anybody an expert
programmer any more than studying brushes
and pigment can make somebody an expert
painter” says Eric Raymond, author of Zhe
New Hacker’s Dictionary. One of the best
programmers I ever hired had only a High
School degree; he’s produced a lot of great
software, has his own newsgroup and made
enough in stock options to buy his own

nightclub.

Work on projects with other programmers

Be the best programmer on some projects;
be the worst on some others. When you're
the best, you get to test your abilities to lead
a project, and to inspire others with your
vision. When you're the worst, you learn

PETER NORVIG: TEACH YOURSELF PROGRAMMING IN TEN YEARS 9

o] 1 J

what the masters do, and you learn what they
don’t like to do (because they make you do it
for them).

Work on projects after other programmers
Understand a program written by someone
else. See what it takes to understand and fix
it when the original programmers are not
around. Think about how to design your
programs to make it easier for those who will
maintain them after you.

Learn at least a half dozen programming
languages

Include one language that supports class
abstractions (like Java or C++), one that
supports functional abstraction (like Lisp or
ML), one that supports syntactic abstraction
(like Lisp), one that supports declarative
specifications (like Prologor C++ templates),
one that supports coroutines (like Icon or
Scheme), and one that supports parallelism

(like Sisal).

Remember that there is a “computer” in
‘computer science”

Know how long it takes your computer to
execute an instruction, fetch a word from
memory (with and without a cache miss),
read consecutive words from disk, and seek
to a new location on disk.

Get involved in a langnage standardization
effort

It could be the ANSI C++ committee, or it
could be deciding if your local coding style
will have 2 or 4 space indentation levels.
Either way, you learn about what other
people like in a language, how deeply they
feel so, and perhaps even a little about why
they feel so. Have the good sense to get off
the language standardization effort as quickly
as possible.

000

With all that in mind, it’s questionable how
far you can get just by book learning. Before
my first child was born, I read all the How To
books, and still felt like a clueless novice. 30
Months later, when my second child was due,
did I go back to the books for a refresher? No.
Instead, I relied on my personal experience,
which turned out to be far more useful and
reassuring to me than the thousands of pages
written by experts. Fred Brooks, in his essay
No Silver Buller identified a three-part plan
for finding great software designers:

1. Systematically identify top designers as
carly as possible.

2. Assignacareer mentor to be responsible
for the development of the prospect
and carefully keep a career file.

3.Provide opportunities for growing
designers to interact and stimulate
each other.

Thisassumesthatsome peoplealreadyhavethe
qualities necessary for being a great designer;
the job is to properly coax them along. Alan
Perlis put it more succinctly: “Everyone can
be taught to sculpt: Michelangelo would
have had to be taught how not to. So it is
with the great programmers”. Perlis is saying
that the greats have some internal quality that
transcends their training. But where does the
quality come from? Is it innate? Or do they
develop it through diligence? As Auguste
Gusteau (the fictional chef in Ratatouille)
puts it, “anyone can cook, but only the fearless
can be great”. I think of it more as willingness
to devote a large portion of one’s life to
deliberative practice. But maybe fearless is
a way to summarize that. Or, as Gusteau’s
critic, Anton Ego, says: “Not everyone can
become a great artist, but a great artist can
come from anywhere.”

So go ahead and buy that Java/Ruby/
Javascript/PHP book; you'll probably get
some use out of it. But you won’t change
your life, or your real overall expertise as a
programmer in 24 hours, days, or even weeks.
How about working hard to continually
improve over 24 months? Well, now you're
starting to get somewhere...

References:

Bloom, Benjamin (ed.) Developing Talent in Young
People, Ballantine, 1985.

Brooks, Fred, No Silver Bullets, IEEE Computer, vol.
20, no. 4, 1987, p. 10-19.

Bryan, W.L. & Harter, N. “Studies on the telegraphic
language: The acquisition of a hierarchy of habits.
Psychology Review, 1899, 8, 345-375

Hayes, John R., Complete Problem Solver Lawrence
Erlbaum, 1989.

Chase, William G. & Simon, Herbert A. “Perception in
Chess” Cognitive Psychology, 1973, 4, 55-81.

Lave, Jean, Cognition in Practice: Mind, Mathematics,
and Culture in Everyday Life, Cambridge University
Press, 1988.

Peter Norvig is a Director of
Research at Google Inc; previously

he directed Google’s core search

algorithms group. He is co-author
of Artificial Intelligence: A Modern
Approach, the leading textbook
in the field, and co-teacher of an
Artifical Intelligence class that
signed up 160,000 students, helping
to kick off the current round of
massive open online classes. He
is a fellow of the AAAI, ACM,
California Academy of Science
and American Academy of Arts &
Sciences.

10 PETER NORVIG: TEACH YOURSELF PROGRAMMING IN TEN YEARS

Alumni association

INVAR

University of Groningen

Computing Science

|

If you are currently studying Computing Science at the University of Groningen, you are in
luck! This is probably the best time of your life. You work in an interesting environment where
new things are invented. You have great parties. You make friends for life. You do what you
love and you are learning to do it better.

But unfortunately, everything has to end one day. The day you graduate you get to celebrate
that you have done something great, but it will also mean you have to say goodbye to your life
as a student. Does this mean you will no longer sce your fellow students? Does this mean you
will never visit the university again? It doesn’t have to be!

Invariant, the alumni association of the study Computing Science at the University of
Groningen, is here for you. Our goal is to bring young and old alumni together and help them
to keep in touch with the university. We try to do that by organizing activities which have
both a professional and a social component.

Have you finished your bachelor and are now doing your master? Then you already are an
alumnus, and that means you can become a member. This could be the perfect way to get in
touch with people working in the industry, have a look inside interesting companies and find
a position at a company for an internship or doing your master’s thesis.

So, do you have a degree in Computing Science at the University of Groningen and do you

also want to become Invariant? Become a member of our alumni association! You can sign up
at our website:

WWW.INVARIANT.NL

00O

Pidgin: je kent het misschien als multi-
protocol messenger app, maar weet je
cigenlijk wat het echt betekent? Ten tijde
van de kolonisatie is het relatief vaak
voorgekomen dat er zogenaamde pidgins zijn
ontstaan. Een pidgin is een nieuwe, tweede
taal die het resultaat is van de combinatie
van verschillende moedertalen. Deze kan
ontstaan in een omgeving waarin er geen
dominante gemeenschappelijke taal is.
Grammaticaregelsvan de onderliggende talen
worden toegepast op woorden uit

andere talen waardoor interessante

Omdat
geen van de sprekers de pidgin

combinaties ontstaan.

initieel als moedertaal beheerst is

N WELKE

[AAL DENK JIU

om pragmatische redenen, (deels) op in
een andere dominante taal. Een voorbeeld
hiervan is het Jamaicaans.

Je vraagt je misschien nu af waarom we
het hebben over de ontwikkeling van
natuurlijke talen en wat dit te maken heeft
met Computing Science. En terecht! Je kunt
je voorstellen dat je als ontwikkelaar een
nicuwe taal leert als ‘moedertaal’ (in mijn

geval QBasic) tijdens je ‘kriticke periode’

Simpelweg blijven hacken

‘totdat het werkt’ IS niet langer

een werkende strategie.

de grammatica eenvoudig, zijn de
klanken duidelijk herkenbaar en
zijn vervoegingen schaars. Voorbeelden van
typische zinnen in een pidgin-taal zijn “long
time no see” of “mij graag meewillen als
mogen”. Enkele historische voorbeelden van
(uitgestorven) pidgintalen zijn; Russenorsk
en Sabir.

Een pidgin kan zich verder ontwikkelen
doordat jonge kinderen opgroeien in een
gemeenschap waar de pidgin veel gebruike
wordt en daardoor de pidgin als moedertaal
verwerven. Als dit gebeurt, spreken we niet
langer van een pidgin, maar van een creoolse
taal. Door de automatische taalverwerving
van kinderen gedurende de kriticke periode
(voor de pubertijd) ontstaan automatisch
nieuwe syntactische en semantische
verfijningen. Veel creoolse talen zijn helaas

geen lang leven beschoren en gaan, vaak

12 TOPICUS: IN WELKE TAAL DENK JIJ?

Hierna kom je in aanraking met Haskell of
Miranda. Tijdens dit leerproces schrijf je
wellicht een programma in een imperatieve
taal met functionele concepten of andersom.
In dit geval zijn er interessante parallellen
te trekken met de eerder genoemde pidgin-
talen. De grammatica is vereenvoudigd
ten opzichte van de moedertaal en slechts
een deel van de uitdrukkingskracht van
de oorspronkelijke taal blijft over in de
combinatie. Het beschreven proces van
taalevolutie vertaalt zich redelijk door naar
programmeertalen waarbij er de laatste jaren
een convergentie zichtbaar is van imperatieve
naar functionele programmeerstijlen. Is die
cursus functioneel programmeren toch nog
nuttig!

Wat is functioneel programmeren eigenlijk

en waarom wil je het wel of juist niet?
Een van de voordelen is dat de stijl van
dichter

prachtige eenvoud van de wiskunde en logica

programmeren veel tegen de
aanlige. Hierdoor is de code zeer compact en
expressief. Een van de nadelen is dat de de
code dicht tegen wiskunde en logica aanligt
en daardoor zeer compact en expressief is.
Ook een wiskundige formule kan helemaal
correct, en toch compleet onleesbaar zijn. De
ontwikkelaar moet dus wel in staat zijn om
relatief complexe abstracties te interpreteren
en het snel uitvoeren daarvan vereist
simpelweg veel oefening in vergelijking
met imperatieve talen. De toepassing van
functioneel programmeren is daarmee dus
geen garantie voor succes en hangt nauw
samen met de betrokken ontwikkelaars.
Enige achtergrondkennis en ervaring met
deze abstractere vorm van programmeren is
zeker welkom en heeft, academisch gezien,
een veel betere ‘return on investment’ dan
het imperatief programmeren waarbij je je
wiskundekennis effectief in het afvoerputje
werpt. Helaas schrikt het hogere abstractie-
en opleidingsniveau van de functionele
pracht en praal een groot deel van de
potentiéle ontwikkelaars af. Simpelweg
blijven hacken in bestaande code ‘totdat het
werke’ is niet langer een werkende strategie. In
de praktijk is een organisatie voorzichtig met
de toepassing van functioneel programmeren
met als voornaamste argument dat code voor
zoveel mogelijk ontwikkelaars toegankelijk
moet blijven.

Binnen grotere softwareprojecten komt
regelmatig een diversiteit aan talen terug.
Wat dat betreft is een vacature die specifick
vraagt om een “junior Java-programmeur”
of een “C#-architect” best wel gek. Durf jj
anno 2014 cen Java-programmeur aan te
nemen die geen JavaScript, Python of Ruby

000

kent? Eigenlijk behoort een soortgelijke
vacature te vragen naar je capaciteiten wat
betrefc het kunnen vinden van patronen
en maken van effectieve abstracties. De
specificke taal die je, toevallig, gebruike is
daarbij maar cen bijzaak, want de tijd zit in
het begrijpen en bedenken van een oplossing
en veel minder in de uitwerking. De keus
tussen een uitstekende C#-ontwikkelaar en
cen junior Java-ontwikkelaar voor ecen Java-
project is redelijk voor de hand liggend. Om
dit te illustreren met een voorbeeld; ik zit
hier nu op mijn werkplek en om mij heen zie
ik vooral software-ontwikkelaars, soms met
de wenkbrauwen gefronst, hard nadenken
om daarna in één vaart de oplossing te
implementeren. De discussies dagelijks op
de werkvloer gaan daarbij voornamelijk over
schoonheid, elegantie en of het future-proof
zijn van een oplossing. Of deze oplossing
imperatief, declaratief; logisch of functioneel
moet worden opgepikt, varieert daarbij sterk.

Ik suggereer dus dat ieder softwareproject
bestaat uit een multiculturele mengelmoes
van programmeertalen en stijlen, maar
dat botst natuurlijk wel met wat je ziet
langskomen aan vacatures. Binnen de
meeste grotere codebases staan de klassicke
imperatieve talen (Java, C#, C++) nogsteeds
Maar praktisch
iedereen leert tijdens zijn/haar eerste jaar op

ruimschoots bovenaan.
de universiteit/hogeschool dat functioneel
programmeren fantastisch en veel ‘beter’ is
dan imperatief ontwikkelen. Prima, maar
toch zie je nergens die berg met Haskell-
vacatures klaarliggen. Is het niet een puur
academische aangelegenheid? Goede vraag!
Wat dit betreft is het heel interessant om
te zien dat de grens tussen functioneel
en imperatief begint te vervagen. Er zijn
bijvoorbeeld Java-libraries zoals Guava die

functionele constructen zoals immutable

TOPICUS: IN WELKE TAAL DENK JIJ? 13

00O

datastructures, map, zip, lazy evaluation,
etc. eenvoudig toegankelijk maken binnen
Java, en er zijn soortgelijke libraries voor
het .NET-platform. Het is hierbij wel
belangrijk om te onderkennen dat dit geen
volledige samensmelting is van de twee
programmeerparadigma’s, maar meer wordt
gedaan onder het mom van: “beter goed
gejat dan slecht verzonnen” Je zou kunnen
zeggen dat hierdoor een pidgin ontstaat.

Het gebruik van functionele constructen
binnen imperatieve talen en frameworks
voelt soms alsof je een kruiskopschroef
vastdraait met een platte schroevendraaier.
Het werkt, maar het kan beter. Je kunt ook
een stapje verder gaan en een taal als F# of
Scala gebruiken waarbij functions wel ‘first
class citizens” zijn. Dat levert bijvoorbeeld
bij Scala prachtige constructies op als pattern
matching met behulp van case classes.
Voordelen van F# en Scala zijn dat ze
eenvoudig kunnen interacteren met
het immense software-ecosysteem
voor de JVM en .NET en tevens
een goed type-systeem hebben.
Vooral deze twee eigenschappen

libraries en software in te zetten. Echter, het
is waarschijnlijk prettiger om al direct met
versie “0.0.1 beta” functioneel te starten. In
theorieisditheelinteressant,omdat hetonder
andere parallelle operaties veel eenvoudiger
maakt vanwege het gebrek aan ‘shared
state’ Hierdoor kun je nagenoeg zonder
locks en foutgevoelige synchronisatielogica
werken. Een ware verademing ten opzichte
van de oude werkwijze waarbij handmatig
threads

nieuw project opzetten waarbij parallelle

moeten worden beheerd. Een

computatic en schaalbaarheid belangrijk
zijn zonder zwaar te leunen op functionele
concepten en technieken is simpelweg niet
handig. Deze aanpak vereist natuurlijk wel
dat alle ontwikkelaars bekend zijn met het
‘abstractere’ functioneel programmeren en
dat het past binnen het bestaande software-
en library-ecosysteem. Voor veel bedrijven
en ontwikkelaars gaat deze laatste vlieger
helaas niet op ook al zijn veel organisaties

Is het type van de functionele
implementatie wel wenselijk?

maaket ze daadwerkelijk acceptabel

voor projecten met een grotere codebase.
Het behoort niet zo te zijn dat een grote
codebase je remt in het gebruik van nieuwe
programmeertechnicken, maar het is wel
zo prettig om een bestaande betrouwbare
library te kunnen gebruiken voor complexe
bijvoorbeeld

gegevensuitwisseling ~ van

miljoenen leerlinggegevens.

Je kunt het gebruik van functioneel
programmeren dus stapsgewijs aanpakken en
bibliotheken inzetten met (slappe aftreksels
van) functionele talen. Een alternatief is om
het gebruik van een functionele taal, zoals
Scala, binnen een bestaand ecosysteem van

14 TOPICUS: IN WELKE TAAL DENK JIJ?

(ook kleinere) bezig met servicification: het
ontsluiten van (kleine) programma’s als een
(REST) webservice. Vooral dit laatste geeft
je veel meer vrijheid wat betreft technicken
door de grotere mate van ontkoppeling
en maakt het mogelijk kleinschalig te
experimenteren met nieuwe technieken.

Vaak is het praktisch niet haalbaar om
helemaal vanaf nul te beginnen, omdat je
dan jaren aan kennis, ervaring en bugfixes
weggooit. We moeten dit dus stapsgewijs
aanpakken en incrementeel de bestaande
codebase herschrijven waar dat zinnig is. Dit
voorstel klinkt heel redelijk, maar er blijft een

groot verschil zitten tussen de opzet van een
functioneel programma en een imperatief/
OO0-opgezet programma. Voor een klein
project kun je nog wel op een bepaalde stijl
standaardiseren, maar in de praktijk is dat
met een groter project met 100.000 classes,
entiteiten en interfaces andere koek. Het
willekeurig refactoren van ‘oude’ imperatieve
code naar een prachtige functioneel opgezette
implementatic kan behoorlijk vervelend lezen
als dit per methode verschile. Wil jij een boek
lezen waarbij per paragraaf willekeurig in het
Duits, Engels of Nederlands is geschreven? Je
komt er wel doorheen, maar het leest minder
prettigdan een boek volledigin één taal. Ook
al is de taal wat ‘plat’.

Deze problemen betckenen natuurlijk niet

dat eens geschreven code heilig is en nooit
meer mag veranderen, want actief refactoren

public class Voorbeeld ({

000

en verbeteren van een codebase is cruciaal.
Het kan simpelweg altijd beter of mooier.
Een functionele taal levert daarentegen niet
per direct een snelle applicatie op. In principe
zit het voordeel hem voornamelijk in de
ontwikkeltijd van de ontwikkelaar, maar die
voordelen zijn zacht en ongrijpbaar. Het is
dus moeilijk om het argument maken dat
je een paar miljoen moet investeren om een
bestaand project te herschrijven van een
imperatieve taal naar een functionele taal.
Zeker omdat het helemaal niet vaststaat dat
een functioneel programma per definitie een
betere applicatic oplevert. Desalniettemin,
dat betekent nog niet dat de keuze geheel
arbitrair is: er zijn zeker voorbeelden te
geven waarbij de functionele variant van
een algoritme minder bug-gevoelig is. Zie

bijvoorbeeld het volgende voorbeeld:

public static void main(String[] args) {
// vind het kwadraat van het eerste even getal dat groter is dan 3
// voor een lijst met nul of meer elementen.
List<Integer> numbers = Arrays.asList(1,2,3,5,4,9);

// imperatieve implementatie:

int result = 0;

for (int i=0;
int e = numbers.get(i);

if (e > 3 && e % 2 == 0) {
result = e*e;
break;

}

// functionele implementatie

numbers.parallelStream()
filter(e -> e > 3)
filter(e => e % 2 == 0)
.map(e => e * ¢e)
findFirst();

i <= numbers.size():;

i++) {

TOPICUS: IN WELKE TAAL DENK JIJ? 15

00O

Het code-voorbeeld is op basis van Java
8. Welk voordeel heeft de
implementatic op de imperatieve? Tip: wat
is het resultaat van de methode findFirst()?
Welke implementatie schaalt beter (pas op:

functionele

strikvraag)? Wat is het resultaat bij cen lege
lijst voor de twee implementaties? Welke
implementatie is correct? Is het type van de
functionele implementatie wel wenselijk? In
hoeverre zou je de functionele implementatie
kwalificeren als ‘pidgin’ in vergelijking met
een taal als Haskell?

CODE URITTEN IN HASKELL
15 GUARANTEED TO HAVE
NO SIDE EFFECTS.

... BECAUSE NO ONE
WILL EVER RUN IT?

xkcp: Haskell E :I i
L

Functioneel programmeren kan dus nuttig
zijn; dus hoe gaan we dit nu aanpakken?
Hoe komen we uit in het ‘paradijs’? Wat
doe je als je applicatie bestaat uit 15071
classes en interfaces? Herschrijf je alleen een
reeks classes met veel interactie met elkaar
zodat ze qua stijl uniform zijn? Hoe bepaal
je welke deelgebieden binnen een applicatie
kunnen profiteren van een functionele opzet

16 TOPICUS: IN WELKE TAAL DENK JIJ?

en voor welke andere delen is de imperatieve
variant ‘natuurlijker’? Het is een spannende
tijd waarin we als ontwikkelaar leven met
een plethora aan ontwikkelparadigma’s.
Ook omdat de grotere ontkoppeling van
componenten via REST-webservices je meer
vrijheid geeft qua tools en technieken.

Ik kijk met veel interesse naar de toenemende
invloed van functioneel programmeren op
de ‘oude’ imperatieve garde. Het gebruik
van functionele concepten voor bepaalde
domeinen kan de foutgevoeligheid van code
verlagen en de leesbaarheid ten opzichte van
de imperatieve uitwerking verbeteren. De
impact die dit heeft op de manier waarop
we software ontwikkelen en nadenken
over problemen is groot. Ik hoop over een
aantal jaren te kunnen zeggen dat we qua
frameworks, talen en denkwijzen de overstap
gemaakt hebben van een pidgin naar een
creoolse taal.

ole]

UNICODE

When a uni starts count-
ing at 1, they have fo get
beer for all unis whom
confinue counting

Unis always look each
other in they eye while
foasting

Don't walk through
closed doors after 20.00
at the BB, it will trip the
alarm

Unis always make their
reports in LaTeX

A real uni always
compiles before
committing

Unis only drink with their
non-dominant hand

When you want to be
next af a game, call dilos.
Dibs is sacred

When you are getting N
beer at the borrel, order
N

UNICODE 17

S pdVarco Aiello- "

‘Shedding

<

[]
I B
2
= |
[

pHOTO: Marco Aiello

18 STAFF CS: MARCO AIELLO

In his final will, dated November 27, 1895,
inventor and millionaire Alfred Nobel left
almost all of his fortune to establish a prize
to “those who, during the preceding year,
shall have conferred the greatest benefit
on mankind”. The prize was designated for
physics, chemistry, physiology or medicine,
literature, and peace. In 1968, thanks to
a donation of the Sveriges Riksbank, the
prize for Economic sciences was added to
the list. As Cover members, we know that
there is no Nobel Prize in our fields of study
and research: no Nobel for mathematics or
computer science. Word has it that Nobel
had harsh feelings towards a mathematician
having an affair with his wife, though this
is unlikely to be true, since he was never
married. As for computer science, well there
simply was no such field in sight at his time.
Mathematicians can console themselves with
the Fields medals and the computer scientists
with the ACM Turing award, which,
incidentally, this year went to one of the
most prominent ﬁgures in my own
field, Distributed Systems: Leslie
Lamport.

Being in a faculty of exact sciences,

my attention is usually driven by the Nobel
Prize in physics. The one that has been
awarded to Finstein, Fermi, Bohr and, of
course, our very own Groninger Zernike.
This prize in popular culture represents more
than just an award for a discovery in physics,
it extends to represent the highest human
intelligence. The name of Einstein is regularly
used as a synecdoche to represent the class
of people who are extraordinary geniuses.
And it is not by accident that these most
notable Nobel Prize winners were active
in particle physics: the most common field
to attract prizes (sce the infographic from
physicsworld.com on the next page). In fact,

o] 1 J

particle physics is a field full of unintuitive
which

imagination, great mathematical skills, and

phenomena need extraordinary
abstract thinking. However, this year things
went in a different direction.

The 2014 Nobel prize award for Physics
was awarded to the inventors of blue LED
lights: Isamu Akasaki, Hiroshi Amano, and
Shuji Nakamura. The motivation citing “for
the invention of efficient blue light-emitting
diodes, which has enabled bright and energy-
saving white light sources” So where is
the hard physics? The theorized particles
that will be only discovered experimentally
many decades later? In fact, there are none.
The motivation is simple: “An invention
of greatest benefit to mankind; using blue
LEDs, white light can be created in a new
way. With the advent of LED lamps we now
have more long-lasting and more efficient
alternatives to older light sources.

“{...} Incandescent light bulbs lit the 20th
century; the 2Ist century will be lit by

So where is the hard physics?

LED lamps” as the Royal Swedish Academy
explained in its press release commenting
the award. Commercial LED lights allow
us to illuminate while saving nearly 90% of
electricity. They allow us to bring light where
no or limited infrastructure is present. In
fact, the 2014 Nobel Prize winners have
solved an engineering problem by which
I mean, a problem in the discipline of
designing and creating complex structures or
new products or systems by using scientific
methods that impact society. In this specific
case, the problem being that of taking red
light emitting diodes, invented in the 60s,
and making them emit blue light with a color

STAFF CS: MARCO AIELLO 19

L] @)

temperature comfortable to the human eye.

Isamu Akasaki, Hiroshi Amano, and Shuji
Nakamura are in fact three engineers who
have been working on the LED light problem
since the 80s. Akasaki, now a retired 85 year
old emeritus, holds a PhD in Electronic
Engineering and has worked most of his life
in the Department of Electronics at Nagoya
University. Hiroshi Amano joined in 1982 as
aPhD student the group of Akasaki, obtained
his PhD in electronic engineering and is
currently a professor in the Department
of Electrical Engineering and Computer
Science. Shuji Nakamur also obtained a PhD
in electronic engineering and, after a career

For most years the thickness of the coloured line
denotes how many laureates shared the prize in
thatyear. In years when the prize was split

between two disciplines (in 1970, for example),
two lines are used, with each denoting the
number of laureates in that discipline.

Astronomy,
astrophysics
and cosmology
18laureates

8 prizes

Nuclear and
particle physics
68 laureates

35 prizes

Applied physics
21 laureates
10 prizes

in the Japanese industry, became a professor
at the College of Engineering, University of
California, Santa Barbara.

There is more though than engineering to the
2014 Nobel prize award for physics; there is
also a tale of research valorization. The story
of Nakamura is in this respect exemplary.
After his degrees, Nakamura went to work
for the Japanese chemical company Nichia.
Being fascinated by the results of Akasaki’s
group, he started working on a solution to
the LED problem based on gallium nitride
(GaN). At the time, this was considered to
be an unfeasible path when considering mass

Timeline key

= Noprize

= One laureate
= Two laureates.
W Three laureates

L nq-ntum physics

ﬂl 10.5 prizes

Condensed-matter
physics.

44 laureates

24 prizes

Atomic, molecular
and optical physics
30 laureates

16 prizes

Classical physics
I 5 laureates
4.5 prizes

20 STAFF CS: MARCO AIELLO

production. He reported that “in 1990 and
1991, the president [of Nichia] asked me to
stop the GaN research immediately. At this
time Nichia had no desire to investigate blue
LEDs, so they asked me to work on GaAs
high-clectron mobility transistors (HEMT)
instead. I ignored them.”

As we know today, he was right to be so
perseverant. Something that makes me
wonder: who would have the courage and the
possibility to take such a decision today? In
the current research atmosphere, researchers
have to promise short and medium term
results that they have to prove feasible
to achieve, in order to get funding. My
impression is that today high-risk basic and
applied research would be ranked poorly by
any financing body on the grounds of lack of
“utilization”.

But let’s get back to the story of Nakamura.
He, as all employees of the company, would
receive an incentive of about 100$ for every
filed patent, and he filed about 500 during
his employment at Nichia. Though, when he
solved the blue LED light problem, he felt
something was wrong. First of all, he thought
he deserved more, but more importantly
he wanted the patent to be licensed to
anybody. In 2001 he said that “if Nichia
had not monopolized the patents, the blue
LED market would have grown 10 times
larger”. After continuous frustration with his
employer, he finally decided to leave Japan
and begin an academic career in the United
States. Soon after, a legal dispute began.
“I decided to take action against Nichia
because in Japan there is a special patent
law that exists only there and in Germany,
he explained. “Even if a researcher invents a
patent at a company, using company money
and company people, the patent belongs to

ol X

the inventor, not the company.”

In 2004, Nakamura won a landmark ruling in
the Tokyo District Court for 20 billion yen
(about 150 million curos), recognizing his
role in the patent and the potential value of it
(Nichia revenues increased by 1000% thanks
to their new LED light business). Though,
after the appeal of Nichia, he decided to
settle for a fraction of that amount. Today
Nakamura enjoys his life as a (rich) professor,
entrepreneur and now Nobel laureate.

PHOTO. Blue LEDs
! i NS e
ErTU YT Nris

The 2014 Nobel Prize is something I cheer
about. It celebrates engineering, it embraces
a vision of valorization of research, it carries
a story of rewarding inventors, it gives energy
conservation a deep support, and finally, it is
about a product that I have enjoyed evermore
since installing it in my home and using
it on my bike. And if that was not enough,
“engineering, valorization and energy” are
also three keywords that are central to the
current faculty strategy for the future.

2014 has been a great year: a Nobel Prize was
awarded to engineers, the Turing award to
distributed systems, and an exciting faculty

strategy was left to follow.

Copyright © 2014 Marco Aicllo

STAFF CS: MARCO AIELLO 21

OO

By: Isabela Constantin | U Z Z |_ E

Through the Looking-Glass, and What Alice Found There...

...is a novel written by Lewis Carroll as a sequel to “Alice’s Adventures in Wonderland”. Indeed,
her adventure is not over, only this time it takes place in the land beyond the looking-glass.
Once she enters through the mirror of her own room, Alice finds herself in a land which turns
out to be a huge chessboard. For now, she is just a pawn, located in the second row... However,
she can become a queen if you help her to move forward up to the eighth row by writing down
the clues in the | |at the end and break the code!

Puzzled as she is, Alice explores the surroundings and encounters the Red Queen, who is
willing to give her advice on how to get around, but it’s her tea time. No, it’s not 5 o’clock in
the afternoon, it’s 12:08. But well... “it’s always time for a tea’, as the Mad Hatter used to say.
Give the angle between the minute and hour hands of the clock at 12:08 and help Alice have
a tea with the Red Queen! Note that down, for it will come handy later, along with the other
clues that you'll find in the way. In the first move, Alice can advance two fields.

In the fourth row, Alice meets with Humpty
Dumpty, which she finds rather difficult to
talk to. “When I use a word, it means just
what I choose it to mean — neither more
nor less.”, Humpty Dumpty says. So when
the little girl asks him for a clue, the egg
replies with a riddle.

ALICE
SMILE +
QUEENS

Translate “CN SC” in order to put Alice on
the right track !

22 PUZZLE

0O0@®
In the fifth field, Alice meets the knight, who

offers to give her a ride if she can help him
with this strange looking symbols...

]

One field further, Alice bumps into
Tweedledum, who's very angry. He had a
fight with his twin brother Tweedledee, who
decided to leave him and travel by himself
through other mirror lands. Happily, he
comes back for he realizes he misses his own
brother. Strangely enough, Tweedledee now
looks like a younger version of Tweedledum.
Is it karma? Or is something else? Help the
twins unveil the mystery and they will point

Alice the way to the next field. You don’t
have to be an Einstein to solve it, but that
would have helped.

Almost there! It’s time to prepare for the
grand coronation. Gather all the

Pair them and break the code so that Alice
can make it to the eighth row and become

HRnnn

Do you think you have broken the code?
Send it to brainstorm@svcover.nl before 19
January 2015 to win a prize!

PUZZLE 23

.n'
e

: y e 3 & et ‘-’5 " . g W
5 A Oy " ¥ A
PR s .)
& . 1 |
¥ N g .
0
R ® . 2]
A Recs. R e
%, W n
LT WC 5 fae S ’ L + N
% . !
b L. A 7 K .‘_: Y, ¢ N o
J34.7% § W R .] .2
Ay 3 L RS ' ' R
N R v : A .
1 i
1

AN

o 'onthe"
block:

=

q <

24 INTRO CAMP: NEW KIDS ON THE BLOCK

September Sth — September 7th 2014, a
weekend we will never forget.

Today was the first day of university and
we all felt just like we did on the first day of
secondary school. Well, not really, because
we had already had lectures for like five days,
but let’s not let that spoil the fun. It was a
beautiful sunny day, so waiting outside the
Bernoulliborg was not a punishment at all.
After waiting for about half an hour, the bus
drivers were ready, and it was time for our
amazing introduction weekend to begin!

When we arrived at Stadskanaal, we sat in a
big circle and got some information about
what was going to happen in the next few
hours and what rules we had to live up to.
After that, we had to drop our stuff and find
a bed to sleep in. It was at that same moment
that I painfully realized I knew exactly zero
of the girls that were present here. So I just
threw my belongings on the first empty bed
I saw and luckily I ended up with
three amazing girls! On the website
they told us to bring a sleeping bag,
pillow etcetera and they turned
out to be completely useless, but
who needs space in their bags for
clothes anyway. Next we went outside to play
some ice-breaker games. We were divided
into groups and played all sorts of games
like ‘krantenmeppen’ (hit someone with a
newspaper if they take too long to say a name)
and ‘sta-bal’ (yell someone’s name, who then
has to try to catch the ball and throw it
through somebody’s legs). Without a doubt
the most stunning game I've ever played was
the game where you had to throw a ball of
wool to create a web. In our case however,
the ball was broken, so we made a fool out of
ourselves while throwing an imaginary ball.

After these games, it was about 8 o'clock and

O0@

everyone was starving. We all got a card to
play the game ‘Gotcha” and were told that
we could get our own exclusive ‘New Kids
on the Block’ t-shirt. And then, finally, it
was time for dinner! We were told that the
soup and the baguettes were ready, so we all
ran to our cutlery as quickly as possible and
seated ourselves at the tables. Dinner tasted
really good, even though I lost my Gotcha
card after about ten minutes. Some of us
also made our t-shirts a bit more fabulous
by turning them into tank tops. With all the
energy we gained from dinner, we were very
motivated to win the evening games with our
group ‘10’ I think we managed to complete
one of the games and at that game we failed
terribly. Another group adopted me, so I
played a few other games, like making our
own song. When the games were done, it
was time for the real fun to begin: drinking
games and beer. Unfortunately, I wasn’t 18
at the time, so I just took my “you shall not

Who needs space in their bags

for clothes anyway?

drink”-bracelet and sat in a corner crying for
the entire night.

The next morning, I was really grateful for
that. We were woken by some really loud
noises at 9 oclock. I can’t tell what it was
exactly, because opening my eyes at that time
was completely impossible. Everyone was, of
course, super excited when we found out that
we had to participate in morning gymnastics.
It was really funny to see who drank a little
too much the night before. After that, it
was time for breakfast and for some an
opportunity to get a little extra sleep. When
breakfast was done, we were separated in

INTRO CAMP: NEW KIDS ON THE BLOCK 25

@O0

groups of four. We played games that you
probably remember from your childhood,
but then a little different. For example, the
games ‘koekhappen’ en ‘spijkerpoepen” were
combined, so you had to try to eat the cookie
while it was hanging somewhere close to your
teammate’s ass. We also played *kratjedraaien’
where you have to run around a beer crate 10
times and then run into the other direction.
I kept hoping that people would bump into
cach other, but sadly they didn’t. Better luck
next year! Then it was time for a nice and
welcome lunch. There was a home-made
video on the screen, made by the IntroCee,
that was really funny to watch. It turned out
that the video had something to do with the
next game. All of the senior students dressed
up as characters and we had to find out what
actions to perform in order to earn as much
money as possible. We had to catch the fox
from the song The Fox, show our fabulous
dance moves and play the game chubby
bunny for example. But as I was really tired
and not very useful at collecting money, I
decided to sneak away and be reunited with
my bed for a couple of hours (the game
was really awesome though). When I woke
up, the game was finished and the sun was
shining. A perfect time to sit in the grass
and enjoy the game of soccer a few guys were
playing. That was until we found out that the
grass was covered with ants.

Dinner that day consisted of wraps, so there
was no need to be hungry in the evening. It
was my turn to help with the dishes. Most
of the people worked hard, so fortunately it
didn’t take very long and it even was quite
funny. When all of our stomachs were full
and the dishes were done, it was time fora pub
quiz! Our team was pretty big so in the end,
the side of the table with the answering form

when they didn’t know it, the other side tried
to help. The questions were quite awesome
and covered almost every subject. If you liked
to watch South Park, played video games like
GTA and knew a lot about Groningen, you
probably did well. Our team became second,
so we could all start another awesome
night with our heads held high. Not that
I contributed much to our score, but I did
beautify the answering forms with hearts,
stars and some other pretty bad drawings.

Apparently morning gymnastics isn’t enough
to scare a group of Computing Science and
Artificial Intelligence students, because the
alcohol again flowed in abundance. I think I
went to bed at about five oclock, but there
were even people who stayed up the entire
night. When we were woken at nine a.m. the
next morning, I was really relieved that we
didn’t have to exercise to earn our breakfast
this time. After breakfast it was time to clean
everything up and pack our bags, because
sadly the camp was coming to an end. I was
given the task to sweep the floor outside, so
me and another boy worked really hard on
that. Well not really, but it ended up clean
anyway so who cares. I didn’t quite get the
fact that our breakfast was also the lunch, so I
didn’t have lunch until 5 o’clock that day, but
that was fine. When it was time for our bus
ride home, it was a lot more quiet than on the
outward journey. Most people went to sleep
the moment they sat down. Which is a good
sign really, because if you're not exhausted
after a weekend like this, then something
went wrong. All in all, T really had a great
time and I hope I can come again next year.
I would also recommend the newbies of next
year to join this camp: it’s a great opportunity
to meet people in a relaxed environment...
And to the students that made this camp

was the side that answered the questions; epic: thanks! You really made our weekend! L

26 INTRO CAMP: NEW KIDS ON THE BLOCK

COLOPHON

The Brainstorm is a magazine published by
study association and is distributed
among its members, staff members and other
interested people. The Brainstorm comes out
at least three times a year in an edition of 500.

Study association Cover
attn. The Brainstorm
PO box 407

9700 AK Groningen
brainstorm@svcover.nl
www.svcover.nl

Chairman
Secretary
Treasurer
Senior Editor
Junior Editor

STUDY ASSOCIATION

Ben Wolf

Annet Onnes

Arnoud van de Meulen
Isabela Constantin
Steven Warmelink

Ben Wolf

